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REDUCED ELECTRICAL CONDUCTIVITY AND OTHER THERMOELECTRIC

CHARACTERISTICS OF N- SixGe1x ALLOY AT ROOM TEMPERATURE
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! Institute of Cybernetics of Georgian Technical University, Anjaparidze 6, 0186 Tbilisi
2 Sukhumi State University, Politkovskaia 61, 0186 Thbilisi
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Resume: Goal The paper presents data on the
reduced electrical conductivity, as well as on the
dependences of the concentration and mobility of
charge carriers on the composition of the N-type
alloy SixGe1-x. The values of the ratio of the effective
mass to the rest mass of an electron vary in the
range of (0.67-1.47), and the weighted mobility —
in the range of (29.6 — 112.3) cm?/V's. The corres-
ponding calculations are carried out for room tem-
perature. The scattering parameter of charge carri-
ers is discussed in the paper. Method. SiGe samples
were produced by vacuum hot pressing of powders
obtained from zone melting ingots. Bulk Si and Ge
wastes were crushed with a steel rod and sifted
through a sieve with 0.2 mm cells. Then it was
loaded into the mill chamber REK PM-100 SM and
crushed for 20-25 hours. The granulometric com-
position of the powder was estimated using a Nikon
optical microscope and a DRON-3M X-ray diffrac-
tometer. Result. ZT can be calculated using ¢" in
combination with the universal electrical conduc-
tivity (o'): from definitions of universal and

reduced electricasl conductivities it is clear that

0" /0'=(ks/qe)*BeT/AL=5.512-10-17
(ZT/Bs)[(Ae/AL)+1].

Thus, from relation to ¢'/o' it is possible to
predict the figure of merit. Note that for N-SixGeix
of all the studied compositions at room tempe-
rature ZT is hundredths. But at 1073°K ZT=0.8.
Conclusion. Some thermoelectric characteristics of
N-type SiGe alloy were investigated. It is shown
that using reduced electrical conductivity it is pos-
sible to calculate the figure of merit of a material.
The values of the ratio of the effective mass to the
rest mass of an electron vary in the range of (0.67-
1.47), and the weighted mobility — in the range of
(29.6 — 112.3) cm¥V's. The calculation of the
scattering parameter shows that A =~ 3 which means

that polar scattering of optical phonons takes place

Key words: SiGe alloy, thermoelectric charac-

teristics, room temperature.

1. INTRODUCTION

For the energy supply of humanity, along with
other methods of direct energy conversion, there is
the thermoelectric effect, which consists of obta-
ining an electric potential using a temperature
difference. At present the most widely used ther-
moelectric materials are semiconductor com-
pounds and alloys, in particular the system silicon-
germanium. Si and Ge form an alloy that has been

used in spacecraft generators since the second half



of the last century until recently [1-4]. This
thermoelectric material is also used in many other
areas of science and technology: coolers, sensors,
thin-film transistors, batteries, solar cells, photode-
tectors, nuclear radiation detectors, thermal
neutron monochromators and X-ray diffracto-
metry devices [5-16].

SiGe is characterized by a fairly high electrical
conductivity (o), which increases its figure of merit
ZT=0S"T/k (S — Seebeck coefficient, T — absolute
temperature, k=ke+kr — thermal conductivity, the
sum of its electron and lattice components).

Specific electrical conductivity of materials
depends on two main parameters — on the
concentration of charge carriers (n) and their drift
mobility (u4): o=qenp (qe — elementary charge). For
many alloys and compounds, the electrical con-
ductivity differs from o of the individual com-
ponents. The electrical conductivity of materials
also depends on their state. For example, at (298-
300)°K for crystalline SiGe 0=2.5-10° Sm'm, for
nanostructured SiGe = (1.5-5)'10*Sm™m* [17,18],
and for polycrystalline SiGe thin film = 2.4-10*Sm
‘m [19], respectively. When doping SiGe with
tantalum carbide nanoparticles 0=(1-2)-10°Sm m!
[20], for SiGe by silicon-molibdenum addition =

(0.6-1.8)-10° Sm'm! [21], and for SiGe by aurum
addition= 1-105 Sm-m™! [22].

The concepts of reduced® electrical conduc-
tivity is introduced in the theory of thermoelec-
tricity. Let's denote this by

0" 0"=(ks/qe)*To/k1=7.425-10°0T/ke
(ks — Boltzmann's constant) [23]. That is, in
addition to specific electrical conductivity, this also

depends on other important thermoelectric para-

meters.

This paper presents data on the temperature
dependence of the reduced electrical conductivity,
as well as on the dependencies of the concentration
and drift mobility of charge carriers on com-
position of alloy N-SixGe1-«®: x=0.7, 0.72, 0.76, 0.8
and 0.83. The calculation of the effective masses
(m*) and weighted mobilities (uw) of electrons at

room temperature was carried out.

2. MAIN PART

SiGe samples were produced by vacuum hot
pressing of powders obtained from zone melting
ingots. Bulk Si and Ge wastes were crushed with a
steel rod and sifted through a sieve with 0.2 mm
cells. Then it was loaded into the mill chamber
REK PM-100 SM and crushed for 20-25 hours. The
granulometric composition of the powder was
estimated using a Nikon optical microscope and a
DRON-3M X-ray diffractometer. The dispersed
SiGe alloy powder obtained in this mode consisted
of grains of constituent elements with sizes of 60-
80 nm. The resulting powder was pressed in a
high-temperature vacuum induction pressure
chamber at temperatures of (1200-1320)°C and a
pressure of 480 kg cm? for 20-30 minutes. The
matrix and punches were made of high-strength
graphite. Profiled samples in the form of rectan-
gular parallelepipeds measuring 10x10x20 mm
were cut out from the obtained briquettes on a
diamond-disc cutting device.

For N-type conductivity, phosphorus was used
as a dopant. The concentration of charge carriers
was 3.2:10%cm. Data on specific electrical and
thermal conductivities are taken from [26] (o was

determined by measuring of resistivity: p=1/0).



3. Results and Discussion
First, we present the typical temperature
dependences of reduced electrical conductivity for

n-type SixGeix (Fig.1). It differs significantly from

—] OZOH
20~

15

10

the data obtained for P-SixGeix [27]. In this case
the temperature dependences of o'’ have the
shape of a “distorted” inverted parabola i.e. have a

maximum.

. | ._T°K
T100 1300 1500

300 500 700 900

Fig. 1 Temperature dependence of o' for N-Sio7Geos
(For other alloy compositions, the type of dependences is the same,

only shifted in the direction of the ordinate axis.)

ZT can be calculated using o' in combination
with the universal electrical conductivity (o) @:
from definitions of universal and reduced elec-
tricasl conductivities it is clear that

0" /o'=(ks/qe)*BeT/k1=5.512-10""7
(ZT/Bs)[(ke/ke)+1].
Thus, from relation to o¢'/c' and taking into
account ki~ k it is possible to predict of figure of

merit. Note that for N-SixGeix of all the studied

compositions at room temperature ZT is hun-
dredths. But at 1073°K ZT=0.8 [29].

Let us consider the effective masses (m*), drift
and weighted mobilities (ua, pw) of N-SixGeix at
room temperature and their dependence on the
alloy composition. For this, we will use the
formulas known from the literature [30,31], which
for 298°K and the concentration specified above
(n=3.2-10%cm3=3.2-10%m"3) will take the follo-

wing form:

2/3

3[e(Sr=2)—0.17] Sr

m*/mo=1.656

1+e-56r-Sr D)

1+ e5(5r—S: 1) M



and

e(Sr=2) 0.304S; }
2)

~ .103
Mw=3.276-10 0{1+e‘5(51‘_1) 11e5Gr—1)
(mo - electron rest mass, pw/pa=(m*/mo)3?).

The dependencies under consideration are shown in Figs 2 and 3. These results are close to the

literature data [32,33].
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Fig. 3 Dependences pa — x (0) and pw — x (A) in N-SixGe1x



The thermoelectric properties of materials are
essentially determined by the mechanism of
scattering of charge carriers [34,35]. There is a

relationship between the scattering parameter (A),

temperature, Seebeck coefficient, effective mass
and concentration of charge carriers [36], which at
the considered temperature and concentration will

take the form:

A=1.161045+2.545-In(m"/mo)¥2=1.16-10S +2.545-In(pw/pue). 3)

Here, the constant A is determined by the
scattering mechanism of charge carriers and takes
the following values:! (acoustic-phonon scatte-
ring), 2 (polar optical-phonon scattering), 3 (sca-
ttering by ionized impurities). (Strictly speaking,
the scattering parameter is denoted by the letter r,
is included in formulas as r+2.5 (instead of A) and
takes the values -0.5, 0.5 or 1.5.)

The calculation shows that for N-type samples
A = 3. This means that polar scattering of optical
phonons takes place. For comparison, the calcu-
lation was also performed for the P-type. In this

case, A=2 (acoustic-phonon scattering).

3. CONCLUSION
Some thermoelectric characteristics of n-type SiGe
alloy were investigated. It is shown that using
reduced electrical conductivity it is possible to
calculate the figure of merit of a material. The

values of the ratio of the effective mass to the rest

mass of an electron vary in the range of (0.67-1.47),
and the weighted mobility — in the range of (29.6 -
112.3) cm?/V's. The calculation of the scattering
parameter shows that A ~ 3 which means that polar

scattering of optical phonons takes place.
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Resume: Objective: To develop a composite
material with enhanced technical and operational
properties based on the B,C-SiC-TiC system.

Method: The composite was fabricated via hot-
pressing. Phase composition and microstructural
characterization were performed using X-ray di-
ffraction (DRON-3) and scanning electron micros-
copy (SEM). Mechanical properties were evaluated
using a German R-100 tensile testing machine and
a Rockwell hardness tester for hardness assessment.

Result: The hot-pressing process induced a
solid-state reaction between titanium carbide (TiC)
and boron carbide (B4C), leading to the in-situ
formation of titanium diboride (TiB;) grains,
which contributed significantly to the composite's
mechanical reinforcement. The addition of perlite
facilitated the development of a glassy intergra-
nular phase, forming continuous "bridges" between
carbide grains, thereby enhancing grain boundary
cohesion and mechanical stability.

Conclusion: The synthesized composite demo-
nstrates outstanding mechanical performance:

Flexural strength: 389 MPa
+  Compressive strength: 1923 MPa
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Impact toughness: 11.2 kJ/m?
These properties make the material well-suited
for wear-resistant applications operating under
high-impact, thermomechanical loading and other

conditions.

Key words: Composite, correlation, porous pha-

se, mechanical strength, structure.

MAIN PART

The development and implementation of new
technologies are currently considered fundamental
prerequisites for creating competitive, multi-
functional materials, advancing integrated mate-
rials science, and promoting national economic
development.

High-temperature, heteromodular, advanced
ceramic composite materials are exemplary in this
regard. These materials are characterized by supe-
rior physical and mechanical properties (such as
hardness, strength limits, fracture toughness, and
modulus of elasticity), excellent technological
properties (such as good machinability with cutting

tools), and outstanding operational performance



(including wear resistance, resistance to static and
dynamic loading, radiation resistance, and more).

The foundation for producing such materials
lies in the use of refractory compounds, including:
boron carbide, boron nitride, tantalum carbide,
zirconium, aluminum, and yttrium oxides, silicon
nitride, silicon carbide, titanium and zirconium
borides, and carbides of titanium, tungsten, and
tantalum. These compounds exhibit high thermo-
dynamic stability, exceptional hardness, and wear
resistance - properties they retain even under
elevated temperature conditions. This thermal
resilience is one of the key factors enabling their
effective application in demanding technological
environments.

This study focuses on the synthesis and
investigation of composite ceramic materials based
on boron carbide (B,C) and silicon carbide (SiC).
For the fabrication of the composite, the following
initial composition (in wt.%) was selected: B,C —
60%, SiC - 20%, TiC - 13%, Perlite — 3%
(appendage).

The selection of these compounds was driven by
their unique combination of properties, including
high hardness, high melting point, excellent
corrosion resistance, wear resistance, and low
density. However, unlike other advanced ceramics,
they exhibit low fracture toughness and impact
resistance, which limits their broader application
despite their advantageous properties. Numerous
studies have been devoted to the development of
composites based on these compounds for various
purposes, particularly in armor applications, due to
their low density [1-13].

In addition to boron carbide and silicon carbide,

titanium carbide (TiC) was introduced into the
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composition. This inclusion was based on the
known reaction that occurs between titanium
carbide and boron carbide during high-tempe-
rature processing, resulting in the in-situ formation
of titanium diboride (TiB;), as confirmed by X-ray
diffraction analysis (Fig. 1). Titanium diboride is
also known for its excellent mechanical properties.

The aim of this study was to achieve a highly
dispersed and uniform distribution of the newly
formed TiB, grains within the composite matrix.
This uniform distribution is facilitated by an
amorphous glassy phase formed by volcanic perlite,
which acts as a bonding medium between the
grains (Fig. 2).

The chemical composition of perlite is as fo-

llows (wt.%):

e Si0,-72.11
e AlLO;-1556
e Fe,0;-053
e Ca0-071

« MgO-035

e K,0-487

e Na,0-327

e Loss on ignition - 3.03

The melting point of perlite is approximately
1240°C. It contains 76 wt.% glassy phase, with the
remainder consisting of crystalline phases and
gases trapped during the rapid cooling of erupted
lava. Its density ranges from 2.3 to 2.4 g/cm3.

Structural-morphological and elemental com-
position of the samples was examined using a JEOL
JSM-6510LV scanning electron microscope, manu-
factured in Japan, equipped with an Oxford Ins-
truments X-MaxN energy-dispersive X-ray spec-

troscopy (EDS) system. Surface imaging was

performed using both secondary electrons (SEI)



and backscattered electrons (BES) under an a "10 nm Pt layer using a JEOL JEC-3000FC
accelerating voltage of 20 kV. In certain cases, to  vacuum sputter coater.

reduce surface charging, samples were coated with
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Fig. 1. X-ray diffraction pattern of the obtained composite.
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Fig. 2. Microstructure of the composite
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The results of the morphological analysis of the
polished sample surface are presented in Fig. 2.
Gray silicon carbide and white boron carbide
grains are clearly distinguishable. Newly formed
titanium diboride is also observed between them,
the presence of which is confirmed by micros-

pectral and electron imaging data (Fig. 4, 5).

SEI

To examine the fracture mechanism of the
composite at the microscopic level, a freshly
fractured sample was prepared, and its fracture
surface was analyzed using a scanning electron
microscope (SEM). SEM image of the fracture

surface is presented in Fig. 3.

Sl
X270

50pm

Fig. 3. Fracture surface SEM micrograph

of the studied composite

Figure 3 illustrates that the morphological
features are consistent and uniform throughout
both the surface and the volume of the sample. The
fracture mechanism is characterized by a combi-

nation of transcrystalline and ductile modes.
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Furthermore, the crystals exhibit stepwise fracture,
which effectively impedes crack propagation. This
behavior is corroborated by the mechanical

strength data presented in Table 1.
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Fig. 5. SEM images illustrating the spatial phase

distribution within the composite

As observed in Fig. 5, titanium diboride forms a
shell around the silicon carbide grains. In the event
of crack initiation within a carbide grain, it
localises the crack and reduces its propagation rate

[1]. Additionally, unreacted boron carbide and

titanium diboride grains are interconnected by thin
amorphous glassy bridges [2]. The composite was
fabricated using the hot-pressing method at
1620 °C. The physical and technical properties of

the composite are presented in Table 1.

Table 1
Physical and technical characteristics of the composite
Theoretical| Relative Open Compressive | Flexural Impact
Composite : : : Hardness,
P density, density, porosity HRA strength, strength, toughness,
BJC-SIC- 1 vy, gems Y. 1, % e. MPa 8. MPa A kJ/m?
TiB,-Perlite
31 0,96 <1,0 91 1923 389 11.2

As shown in the table 1, the obtained composite
is characterized by high physical and mechanical
properties and low volume porosity, which
enhances its application potential. To further
characterize the composite, Z. Kovziridze’s
formulas describing the dependence of mechanical

properties on the porous phase and the correlation
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between the morphology of the crystalline phase
and macromechanical characteristics were applied
[14]. For this purpose, the morphology of pores and
crystals was examined using microstructural
images. The data presented in Tables 2 and 3 were

utilized as input for the corresponding formulas.



Table 2

Porous phase morphology
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Table 3
Crystalline phase morphology
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omp= P/FpPaPvorPm P4 — pore distribution factor in the matrix;
Where: Pvol — volume fraction of the porous phase in the

P — applied load in bending mechanics (MPa);

Fy — pore shape factor;

Where:

0d-PFxa/KmKvFxs

matrix;

P — average pore size.

om/p = P/Fp.Pd.Pvol.Pm =389/ 2 0,9 - 0,83 - 7= 389/10,46 =37.2 MPa.

P — applied load in bending or compression

mechanics (MPa);

Fxa — crystal distribution factor in the matrix;
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K — average crystal size (um);

Kv — volume fraction of crystals in the matrix

(wt.%);

Fis— crystal shape factor.



0a=PxFra/KmKvFx =389x0,9/ 6 - 89,17 4.5= 389.0,9/ 2407.6 = O.17

0a=PxFias/KmKvFir =1923x0,9/ 6 - 89,17 4.5=1730.7/2407.6 = O. 72

The formula accounts for both volumetric and
surface defects of crystals, as well as the micro- and
macrostructural volumetric and surface morpho-
logy of the crystalline phase, its distribution within
the matrix, and the transformations occurring due
to chemical and physicochemical processes during
material consolidation. These properties are deter-
mined experimentally.

Notably, the proposed formula is applicable to a
wide range of ceramic materials and ceramic
composites, including metal-ceramics, biocera-
mics, glass-ceramics, and glass-metal-ceramics. It
captures the relationship between the macro-
mechanical properties of these materials, speci-
fically, their ultimate failure characteristics, and
key morphological parameters of the crystalline
phase, such as crystal size, shape, distribution, and
volume fraction within the matrix, as well as the
crystal shape factor. In addition, the formula
accounts for the contribution of the most
mechanically robust phase in the consolidated
material, reflecting its critical role in determining
the overall performance characteristics essential
for industrial application and long-term service
reliability.

During thermal treatment, key factors influe-
ncing the final properties of ceramic materials
include the dynamics of crystal formation, their
spatial distribution within the matrix, and the
evolution of crystal morphology. These aspects,
thoroughly examined in this study, are closely

linked to the physicochemical processes that occur
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under thermal stress. The proposed formula offers
a comprehensive framework for modeling the
correlation between the morphology of the
crystalline phase and the macromechanical pro-
perties of ceramic components. Its applicability
extends to all types of ceramics and ceramic
composites employed in advanced technologies,
diverse engineering sectors, and everyday
applications.

The B,C-TiC-SiC-TiB,-perlite composite, which
demonstrates high mechanical and operational
properties, was fabricated via hot pressing at a
temperature of 1620°C. However, as the results
indicate, the correlation is not strong. This may be
attributed to the high crystal shape factor. Notably,
attrition milling and planetary ball milling of the
mixture were deliberately avoided, maintaining
the materials’ original dispersion. The disparity
between the smallest and largest particles was
substantial, which significantly contributed to the
reduction in correlation. Consequently, the
correlation coefficient was found to be 0.17 for
bending and 0.72 for compression.

Ideally, the crystal shape factor should not
exceed 3, and the crystal size should preferably
remain within the range of 7-8 microns, while also
being uniformly distributed throughout the matrix.
Experimental evidence shows that fine-grained
samples exhibit higher strength compared to
coarse-grained ones [15-19], since the length of
Griffith microcracks is determined by grain size.

This phenomenon is presumably related to stress



accumulation at grain boundaries caused by
anisotropic thermal expansion [20-26].

The volume and surface electrical resistivity (pv
and ps) of the obtained material was experimentally
determined as a function of temperature in the
range of 25-300°C. Measurements were conducted
using a specially designed thermally controlled
cell, simultaneously on two samples, with an
electronic ohmmeter employed for resistance

measurements. The test samples were disk-shaped,

with a diameter-to-height ratio of approximately
D/H = 5. Air-dried samples (25°C, relative humidity
47.5%) were placed in the measurement cell, and
their volume (Rv) and surface (Rs) resistance values
(Q) were recorded. Subsequent measurements in
the of 100-300°C were

performed at 50°C intervals. Using the corr-

temperature range
esponding calculations, specific resistivity values pv
(©-m) and ps (Q2) were obtained. The resulting “pv.

- t” relationships are presented in Figure 6.
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Fig. 6. Temporal dependencies of the material’s

volumetric density (pv) (curve 1) and

surface density (ps) (curves 2 and 2?)

It was established that the variation of volume
resistivity (pv) with temperature is linear, and
within the 25-300°C interval, a nearly twofold
decrease in specific resistivity is observed. A
noteworthy behavior is exhibited by the surface
resistivity (ps), whose values were determined
under conditions of reversible temperature cycling

in the range of 25-300°C. For the initial sample
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(Curve 2), the ps values were relatively high at
room temperature, showed a sharp decline in the
range of 25-150°C, and subsequently aligned with
the pv values. During the cooling phase (Curve 2'),
ps values closely matched those of pv, with only a
minor deviation (=1 Q).

The distinct behavior of the “ps—t” curve under

temperature reversal is likely attributable to



condensed moisture on the surface of the initial
sample, which evaporated during heating, leading

to the convergence of ps and pv values at higher

The key electrical properties of the investigated
material, calculated across the temperature range

of 25-300°C, are presented in Table 4.

temperatures.
Table 4
Principal electrical characteristics of the studied material
Electrical Properties
N Title Conventional Unit of Values
Symbol Measurement

1 | Temperature Coefficient of

Electrosensitivity B Q-m-K 529.1
2 | Temperature Coefficient of

Electrical Resistivity Aar Q-m-K1 -2,7-1073
3 | Activation Energy of AE eV 0,334

Electrical Conductivity

The resulting material, primarily composed of
titanium, silicon, and boron carbides, well-known
for their electrical properties, exhibits electrical

behavior characteristic of semiconductor materials.

CONCLUSION

During the hot pressing at 1620°C, a reaction
occurred between titanium carbide and boron
carbide, resulting in the formation of titanium
diboride. This reaction contributed to a significant
enhancement of the composite’s mechanical
properties. Additionally, the presence of perlite in
the composite led to the formation of a glassy phase
that creates so-called “bridges” with the carbide
further the mechanical

grains, improving

performance of the material. A clear correlation
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was established between the matrix composition
and the mechanical properties of the material,
specifically showing the dependence of mechanical
characteristics on the content of the porous phase.

The resulting composite in the B«C-SiC-TiC-
TiB2 system, doped with 3 wt.% glassy perlite,
primarily composed of titanium, silicon, and boron
carbides known for their electrical properties,
electrical behavior characteristic of

exhibits

semiconductor materials.
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Resume: Goal - to obtain on first stage f -
SIALON containing nanocomposites by reactive
sintering method at 1400°C, with nitrogen process
from origin composition in TiC-BN-SiC-B4C-Si-Al-
Al2Ossystem. By using this method of synthesis, it
became possible to receive nanocomposites with
different percentages of p - SIALON. Our task was
to study the phase composition of received
consolidated materials in the TiC-TiB2-BN-SiC-
B4C-B-SiAlION-ALQO:s (nanopowder-400nm.)
system.

Method. The obtained mass was grounded in an
attritor and the consolidated composite was
obtained by hot pressing at 1620°C during 40
minutes, with glass perlite (Armenia) dope 2 mass%,
delaying at final temperature for 8 min, under 30
MPa pressure and vacuum — 10 Pa. Perlite from
Aragatc contained 96 mas. % glass.

To study the phase composition of the
composites, we conducted an X-ray structural
analysis on the DRON-3 device. And to study the
microstructure, we conducted research on an
optical microscope -AC100 and a raster electron
microscope “Nanolab 7” of the company "OPTON”.
The values of the electrical parameters of the studied

composites were calculated on the basis of the
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obtained "lgp- t" dependence. We have studied
mechanical properties.

Result. In TiC-TiB2-BN-SiC-B«C- (-SiAION-
AlOs system we obtained nanocomposites with
high mechanical properties. The advantage of this
method is that compounds, which are newly
formed thanks to interaction going on at thermal
SisN4, Si, AIN which

contributes to B-SIALON formation at relatively

treatment: are active,
low temperature, at 1300-1350°C. It is evident that
inculcation of ALN in crystal skeleton of 3-SisN4
is easier since at this temperature interval crystal
skeleton of SisNais still in the process of formation.
$3-SiAION was formed at 1450°C. Part of boron
carbide was transformed into boron nitride in
nitrogen environment and in titanium diboride,
which in the case of both composites is in small
quantities.

Conclusion. The phase composition of the
obtained composite provides high physical-
technical and performance properties of these
nanocomposites. Compression strength-2198 MPa,
Bending strength-271 MPa, Thermal expansion

coefficient a20-700-3.8 10-6°C.

Key words: nanocomposite; hot press; electron
microscope; phase composition; B4«C-BN-TiC-TiB2-
SiC-B-SIALON-ALOs3 nano-powder system.



1. INTRODUCTION

SIALON is a general name for a large family of
silicon nitride-based ceramic aloys, it was first
adopted in the beginning of 1970.3-SIALON is the
most well-known phase. Its chemical formula Sie-
7ZAlz0zNgz (z = 0-4.2) and its hexagonal crystal
structure are similar to the structure of f-SisNa.

SIALON is distinguished by: high hardness,
strength, wear resistance. It retains these properties
under high temperature conditions.

Composites working at high temperatures should
be characterized by high density, hardness, thermal
resistance and should retain these properties when
working at high temperatures. Composites obtained
from highly refractory oxide ceramics retain their
hardness at high temperatures but are characterized
by a high coefficient of thermal expansion and
therefore low thermal resistance. Carbide-based
ceramics have a relatively high coefficient of
thermal expansion, but they are oxidized easily
when working at high temperatures. Because of this,
science has turned its attention to obtain super high-
strength composites - SIALONs [1-7]. The results of
our work [8-10] show that the composites obtained
with the SIALON matrix are highly refractory
materials with high performance properties and
retain these properties when working at high
temperatures. For the study we used electron
microscopic, optical and X-ray phase analysis
methods.

The paper describes the preparation of a super-
ceramic composite with high macro and micro-
mechanical properties of SIALON carbide at relat-
ively low temperatures using an innovative, simple
technology. As is known, STALONS are obtained at
temperatures of 1800-2000 °C. With the help of

vitrified (96 mas. % glass phase) perlite-2-3 mas. %
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dopant, we obtained similar material at 1450 °C and
in the composition with titanium carbide, boron
nitride, boron carbide, silicon carbide and alumi-
num oxide (nanopowder), we were able to obtain
eutectic precipitation at relatively low temperature
- 1620 °C by hot pressing. The material is so hard,
that it damaged the diamond beads when trying to
treat it, and a 3000 atmosphere water jet failed to cut
the specimen.

X-ray is performed on DRON-3. Electron
microscopic research was performed on a raster
electron microscope “Nanolab 7” of the company
"OPTON”. No special form of samplesisrequired for
this study, only asample fractureisreqguired. It should
be noted that the fracture is better to be new, because
after some time the surface of the fracture might be
covered with dust particles or oxides, which reduces
the contrast and makes it difficult to distinguish
phases In addition, the ions continue to move on the

surface of the new fracture for some time, which
makes the study very interesting.

2. MAIN PART

To obtain the composites, we prepared mix-
tures, the composition of which is given in Table 1.
To C-18 composite we have added carbon fiber,
which is characterized by high elasticity modulus
(200-935GPa), high- tensile strength (1-3 GPa),
with these properties it is the desired component,
since it strengthens the composite material [11].

The samples were made in a cylindrical shape
by the semi-dry method, the molding pressure was
20 MPa. After drying the samples were burned out
in a silite oven at a temperature of 1450°C. Mode
5°C /min. At the final temperature the samples

were kept for 40 minutes.



The physical-technical characteristics and  viscosity, density, thermal resistance and thermal

electrical properties of the finished samples, expansion coefficients were studied.

compression strength and bending strength, impact

MATERIAL COMPOSITION OF COMPOSITES. TABLE 1

Composition of the initial component, mass%

Perlite
Composite = kaolin | TiC . . BN Carbon
Al  ALOs  SiC @ Si Aragats Y20 MgO B4«C
index (Ukraine) fiber
(Armenia)
C-19 5 - 17 22 21 | 20 2 = 1.5 1 10.5 _
C-18 _ - 18 20 23 19 _ - 15 1 145 3
C-16 - 5 16 18 20 | 17 2 9 15 1 105 -
C-17 - 6 16 18 22 17 2 11 15 1 5.5 -

The bending strength was measured on a Obend. = 3/2. Plo/bh?,

German-made disrupting machine R-100, which where :P- is the force at which the sample was

has a device determining the strength limit of the  disrupted, kg; lo- distance between supports at 3-

specimens on a three-point bend. The loading
speed was 5 mm/hr.
When determining the bending strength limit,

the maximum stress is calculated by the following

point load = 25 mm; b- sample cross-section width,
mm; h- the height on which the stress is applied to
the specimen, mm. The test results of C-19 and C-

18 composites are given in Table 2.

formula:
Table 2
THE PHYSICAL-TECHNICAL CHARACTERISTICS OF COMPOSITES
compression Thermal expansion
Composit | Density Bending strength | Impact viscosity
strength Opress. coefficient o,
e name g/cm? Obend. MPa a, kj/m?
MPa 10-%(20-700°C)
C-19 3,11 1844,4 262 17,62 3,81
C-18 2,99 2189,8 264 18,14 3,83
C-16 3.12 2194.4 268 18.90 3.78
C-17 3.16 2198.5 271 18.80 3.82
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Impact viscosity was determined by the
pendulum impact testing machine. When the
sample is crushed, the scale marks the swing angle
of the pendulum P. Impact-bending strength is
calculated by the following formula:
Aimp. =A/S

where: A - work spent to crush sample, kilo

joules (k]); S - the cross-sectional area of the

samples, m? For the C-19 composite samples: the

cross-sectional dimensions were 1 cm x 0.35 cm; a

=17,62 kJ/m? ; for the C-18 composite

617
~ 1x0,35

samples: the cross-sectional dimensions were 1 cm

017 _18.14kJ / m2.

1x0,34

x0.2cm;a=

As can be seen from Table 2, the bending
strength and the impact viscosity of both
composites (C-19, C-18) are almost the same and
amount to 262; 264 MPa and 17.62; 18.14 kj/m?
respectively. Ceramic composites experience ther-
mal load sand gas-thermal impacts when working
at high temperatures. In all ceramic materials there
are invisible micro-cracks [12] and when the
strength of the product is less than the loads, these
loads are converted into the decomposition stress
energy. At critical loads, high energies develop,
causing decomposition of the product.

To determine these energies, Z. Kovziridze
proposed a formula for calculating the failure stress
energy [13-14], which establishes a universal
interdependence between the failure stress energy

of a product, the mass of the product, and the rate

30

of crack development under critical stress con-
ditions. The Z. Kovziridzes formula for calculating
the failure stress energy is as follows:

Ew=ma cp,

Where Euwis the failure stress energy, kilo joules;
m- sample mass, g; acp.- the crack development rate
-2000 m/sc.

In our case the sample dimensions were
5,2x5,2x45mm, the sample mass was 3.86g.
According to Z. Kovziridze’s formula the failure
stress energy is:

Ew=macp=3,86x2000=7,72 kJ.

The thermal expansion coefficient of the
composites (C-19, C-18) was determined with the
help of a quartz vertical dilatometer -DKV for
measuring the temperature coefficient of linear
thermal expansion in the temperature range (20-
700°C). Table 2 and Figure 1 show that this indicator
is the same for both composites and is a = 3.88 and
3.80 - 10, respectively.

It is known from the literature [13] that the
coefficient of thermal expansion of corundum
ceramics is high and is oeo-s0c= 6,2 « 10°. While the
low-oxygen content of refractory compounds, na-
mely silicon carbide, is a=5,18:10¢ and is charac-
terized by high thermal resistance [15] It should be
noted that the composites we obtained (C-19, C-18)
are characterized even by a lower coefficient of the-
rmal expansion, respectively a=3,88 and 3.80 + 10
and a correspondingly higher thermal resistance,
which is very important for composites that have to
work for a long time at high temperatures and in an

aggressive medium (Fig. 1).
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Fig. 1. Thermal expansion coefficient and

temperature interdependence

Electrical characteristics have been established
for the composite of compositions (on the device
created by Prof. T. Cheishvili - CH-24) which were
obtained as a result of the "resistance-temperature"

dependence experiment. The volumetric electrical
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resistance of the composites was determined in the
section allowing measurements at high-tem-
peratures in the range of 20-300°C, by using an
electron ohm meter as the measuring instrument.

Graphite electrodes were placed on the surface of



the prismatic samples (the upper measuring
electrode had a diameter of 14 mm and the lower
measuring electrode had a diameter of 16 mm).The
dependence of the test specimens on the "specific
resistance-temperature" is linear, revealing the
peculiarities that an increase in temperature causes
a decrease in electrical resistance. Besides the C-19
specimen is characterized by lower values of
electric resistance than the specimen C-18, C-16,
C17. The difference between the electrical
resistances is particularly noticeable at room
temperature (the difference is approximately by
three degree), but it is less evident at high
temperatures (the difference decreases to one
degree), which is clear from the material reflecting
the results of the experiment (Fig. 2). The values of
the electrical parameters of the study composites
were calculated on the basis of the obtained "lgp- t"
dependence. Three electrical characteristics were
determined for composites: the temperature coe-
fficients of electrical sensitivity (B) and electrical
resistivity (ar) the activation energy of electrical
conductivity (Ea), the value of which are presented
in Table 3. The difference between the electrical
characteristics was found to be significant (C-18
composite data are approximately 5 times higher
than those obtained for C-19 composite).

It should be noted that composites have a
negative or (resistance decreases with increasing
temperature) and low value of Ea- (realization of
electronic type of electrical conductivity is expected

for both materials).
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The results obtained should be related to the
basic phases represented in C-19 and C-18
composites obtained by the synthesis at 1450°C,
under the same conditions. Regarding the com-
positions C-16 and C-17, the “log »-r” dependences,
which occupy an intermediate position between C-
19 and C-18, it can be noted that the compositions
contain two “new” ingredients - TiC and BN. In
some high-temperature synthesis of composites,
one cannot exclude the participation of these in the
formation of a new semiconductor phase - TiBa.
Based on the composition of the composition C-16
and C-17 (Table 1), the expected amount of TiB2
should be greater in the composition of C-17. This
is also confirmed by the electrical properties in
comparison with composition C-16; composition
C-17 has lower values of resistivity and activation
energy.

According to the results of X-ray phase analysis,
the leading phase in the composite of both
compositions is STALON. They also contain five
other crystalline compounds of different nature.
Due to their electrical properties they can be divided
into two groups: Dielectrics (a- Al2O3, BN, AIN) and
semiconductors (SiC, Si). Considering the identical
conditions for obtaining the C-19 and C-18
composites, the factor determining their low
resistance and activation energy values could have
been the number of SiC and Si solid phases with
semiconductor properties existed in the study

materials.
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Fig. 2. Specific electrical resistance and

temperature dependence

Based on the comparison of the electrical
characteristics of composites, it can be assumed that
the concentrations of SiC and Si in the C-19
composite must be higher than in the C-18
composite. This could be detected by two
approaches: by determining the amount of SiC and
Si or by the density of the materials. Both appro-
aches proved to be unusable for C-19 and C-18
composites, since quantitative calculations based on
the available X-ray were impossible (due to the
abundance of crystal phases and the coincidence of
their characteristic intensity peaks) and also the
negligible differences between mass densities. (d =
3.11 for C-19; d = 2.99 g /cm?3 for C-18). In any case,
the number of SiC in C-19 could not have been
higher than in C-18, judging by the material
composition of the test composites.

At the same time, X-ray phase analysis revealed
the presence of Si in both composites, which could
affect the electrical conductivity of the composite.

But the Si content in the initial mixture (according

to the material compositions) is identical and
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amounts to wt. 20%. At the same time, the C-19
composite body contains two natural rocks (kaolin
and perlite) that contain silicon dioxide. Kaolin (5
wt.%) and perlite (2.0 wt.%) provide approximately
5.2 wt.% and 3.0 wt.% Si in the C-19 composition,
respectively. The reason for this is the structural
breakdown of the mineral kaolinite in the geo-
polymer (kaolin) caused by the temperature and the
possibility of conducting the parallel alumothermic
process:
4 Al + 3 SiO2= 2AL1:0s + 3Si.

This process will result in an additional 2.4% by
weight of Si in the C-19 composite, and it is
practically expected that the amount of Si in C-19
will be 24.4% by weight. A contributing factor to
the uptake of Si from SIO2 may be the formation of
a liquid phase caused by the low-temperature
melting of perlite-1240°C. Aluminum nitride is
formed by the reaction of a portion of the aluminum
powder in the initial mixture with nitrogen by the
following reaction:

2 Al + N2=2 AIN.



Table 3

Electrical characteristics values of the composites

Sample Coefficient of electrical Activation energy Temperature coefficient
e sensitivity, of electrical conductivity, of electrical resistance,
B(QmK) AE(ev) aA: ( QmK-1)
C-18 -7170 1,24 -2,6:102
C-19 -1560 0,27 -5,7-103
C-16 -1625 0.65 -1.4.10?
C-17 -815 0.32 -6.8.10°3

As a result of decomposition of kaolinite at high
temperatures part of the aluminum powder
restores silicon from SIO2according to the reaction
above. This process could lead to a change in the
ratio between an increase of the amount of
semiconductor Si and AIN carrying the insulating
properties in favor of Si, this would lead to the
increase in electrical conductivity in the C-19

composite.

Structural study

The test specimens were prepared using the same
technology as described in previous papers [16-21],
i.e. the SIALON was synthesized in the nitrogen
medium at 1400-1450° C, and then the obtained
mass was grounded in an attritor and the

consolidated composite was obtained by hot
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pressing at 1620°C. , 40 minutes, delaying at final
temperature for 8 min. under 30 MPa pressure.

70 pM of study samples of the composite
obtained in this mode were cut from 70 mm
diameter and 8 mm thick discs. The cut was made
on a 395-M profile grinding machine with a 100
mm-diameter metal binding diamond cutting disc,
diamond grain size 50/40 um, cutter rotation speed
4000 rpm, cutting speed 0.7 mm / min.

The surface of the cut specimens was ground on
a 3 G71 flat-bottomed grinding machine with a 200
mm- diameter diamond abrasive disc on a Bakelite
binder, diamond grainsize-50/40um.

Phase analysis of hot-pressed samples was
performed on an X-ray machine DRON-3 using
CuKa rays.



FIg. 3. C-19 and C-18 composites X-ray (1400-1450°C)

Examination of the X-Ray patterns of the
samples burned out at 1400-1450°C (Fig. 3) shows
that at 1400°C the characteristic reflexes of the
SIALON are already observed in both composites,
and at 1450°C their intensity is relatively increased.
Judging by the intensity of the characteristic peaks
of the STALON, the number of STALONSs formed in
the C-19 composite is relatively larger than in the C-
18 composite, which can be explained by the
presence of kaolin in the C-19 composition. In our
opinion, this is due to the nitrogenation of the
thermodynamically ~ active  kaolinite  core
AlO32Si02, which was formed as a result of the
decomposition of the mineral kaolinite. The
following phases have been observed in both
composites: Si-AL-O-N, SiC, a-Al20s3, BN, and Si
(small amount unreacted.).

Part of boron carbide and titanium carbide in the
composites was converted to boron nitride and
titanium diboride upon burning out in nitrogen

medium at 1400°C by the following reaction:
B4C+2N2=4BN+C, and B4«C+2TiC=2TiB2+3C, which
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in the case of both composites is in small quantities.
Newly formed, fine-grained boron nitride improves
the microstructure, which is a prerequisite for high
mechanical properties, such as: high thermal con-
ductivity, low thermal expansion, good resistance to
thermal shocks, easy workability, chemical inert-
ness and low wettability with molten metals. It is
used in radiators, boron-alloyed silicon semicon-
ductors, welding trays, crucibles, microwave tubes,
sputtering targets, high-precision welding, foundry
production, etc.

Analysis performed using an optical microscope
showed that the composites in both cases were
silicon car bide and corundum grains located in the
matrix (Fig. 2). At the same time the microstructure
of C-18 composite is more fine-grained. It can be
assumed that during the sintering process of C-19
composite, due to the composition of these
composites, more liquid phase is generated than
during the sintering process of C-18, contributing to
the sintering intensity, which is evidenced by the

relatively low porosity of C-19 composite. At the



same time, the liquid phase promotes the
appearance of small grains and their subsequent
recrystallization into large grains.

Electron microscopy shows the surface of a
well-sintered specimen, on which crystals of the
basic phases contained in C-19 composites are
clearly seen, namely silicon carbide and corundum
grains distributed in the STALON matrix, even the
finest grains of boron nitride are also observed,
which are better seen when magnified at close-up

(Fig. 4).

When identifying grains of silicon carbide and
corundum, along with SEM images, we relied on
the results of X-ray diffraction analysis and X-ray
spectral microanalysis.

Figure 5 and 6 shows the micro-X-ray spectral
analysis image s of the C-19 and C-18 composites,
the spectrum of the 3 sections and the scheme of
the constituent elements, their percentage content,
which shows that the main constituent (matrix) of

the composite is SIAION-BN.

BEC

20kV WD15mm SS60

=1,000 10pm

d)

Fig.4. C-19 (a, b) and C -18 (c, d) composites Electronic-microscopic images at
different magnifications X - 550; X-1000

36



Electron Image 1
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Fig. 5. Electronic-microscopic and

micro -X-ray spectral images of C -19 composite
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Electron Image 1

Spectrum 3

B Spectrum 58

Fig. 6. Electronic-microscopic and

microrentgeno -X-ray spectral images of C -18 composite

Electron Image 10

Fig.7 Electronic-microscopic and

microrentgeno -X-ray spectral images of C -16 composite
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Fig.7 and Fig 8 shows the micro-X-ray spectral analysis image s of the C-16 and C-17 composites, the
spectrum of the sections and the scheme of the constituent elements, their percentage content, which

shows that the main constituent (matrix) of the composite is TiC, B4C, TiB2, SiC, Al203, SiAION-BN.

Fig.8 Electronic-microscopic and microrentgeno —

X-ray spectral images of C -17 composite

Table 4
shows the test condition of STALON.
<<** Test condition-SiAION-100 ***>>
Test mode Load-unload
Sample name SiAlon-zv Sample No. #1
Test force 100.000[gf] Minimum force 0.200[gf]
Loading speed 1.0(7.1448[gf/sec]) Hold time at load 5[sec]
Hold time at unload 3[sec] Test count 23
Parameter name Temp Parameter 20
20.06.17-SiAlon-zv-
Comment
100;DHV5-3
Poisson's ratio 0.190
Cf-Ap,As Correction ON Indenter type Vickers
Read times 2 Objective lens 50
Indenter elastic 1.140e+006[N/mm?2] Indenter poisson's ratio  0.070
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<<¥** Test result ***>>

SEQ Fmax hmax hp hr DHV-1 DHV-2 Eit Length | HV Data name
lof] [um] [um] [um] [(N/mm2] [um]
1 100.753 | 2.0927 | 1.0353 | 1.3623 | 1124.606 4595.143 | 2.023e+005 | 12.133 | 1269.108 SiAlon-100(1)
2 100.862 | 2.1408 | 1.1973 | 1.4454 | 1075.849 3439.729 | 2.028e+005 | 10.673 | 1641.878 SiAlon-100(2)
3 100.954 | 2.1185 | 1.0085 | 1.3472 | 1099.608 4852.203 | 1.911e+005 | 11.989 | 1302.427 SiAlon-100(3)
4 100.844 | 2.1300 | 0.9980 | 1.3526 | 1086.598 4949.256 | 1.881e+005 | 11.623 | 1384.295 SiAlon-100(4)
5 100.935 | 2.1822 | 1.1183 | 1.4290 | 1036.181 3945.265 | 1.855e+005 | 12.721 | 1156.721 SiAlon-100(5)
6 100.624 | 2.0945 | 1.0240 | 1.3135 | 1121.301 4691.482 | 1.921e+005 | 11.843 | 1330.428 SiAlon-100(6)
7 100.551 | 2.1229 | 1.0193 | 1.3350 | 1090.715 4731.042 | 1.868e+005 | 11.551 | 1397.624 SiAlon-100(7)
8 100.826 | 2.1357 | 1.0016 | 1.3362 | 1080.626 4912.610 | 1.834e+005 | 11.550 | 1401.679 SiAlon-100(8)
9 100.826 | 2.1173 | 0.9846 | 1.2881 | 1099.473 5084.458 | 1.815e+005 | 11.404 | 1437.730 SiAlon-100(9)
10 100.825 | 2.1761 | 1.0974 | 1.4160 | 1040.858 4092.733 | 1.848e+005 | 11.697 | 1366.620 SiAlon-100(10)
11 100.807 | 2.1566 | 1.0491 | 1.3859 | 1059.580 4477130 | 1.857e+005 SiAlon-100(11)
Average | 100.801 | 2.1334 | 1.0485 | 1.3646 | 1083.218 4524.641 | 1.895e+005 | 11.718 | 1368.851
Std. Dev. | 0.120 0.029 0.064 0.049 | 28.966 502.835 7155.469 0.529 | 125.730
CcVv 0.119 1.372 6.141 3.617 | 2.674 11.113 3.777 4518 | 9.185

110.00

Tast torcolgl]

<<** Force-Depth graph ***>>

Force-Depth graph

Depth[um]

<<*** Depth-Time graph ***>>
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Depth-Time graph
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Fig. 9 Mikromechanical charaqteristics of SIALON

The results of micro-X-ray spectroscopy and
electron microscopy of the given composites are
consistent with X-ray structural analysis. In the
matrix of composites C-19 and C-18 there are
represented: f-SIALON-ALQOs-SiC, BN crystals are
distributed in the matrix and In the Composites CH-
16 and CH-17 there are represented TiC-TiB2-BN-
SiC-B4C-B-SiAlON-AlL:Os phases. Table 5 shows d
the data on phase components in C-19 and C-18
composites.

To determine the porosity, we selected the field
of vision and determined its area. In the field of
vision, we calculated the number of pores according
to the size of their diameter; determined the
volumetric content and the middle diameter of
pores for each composite. The total pore content in
C-19 composite is approximately Pvol = 3,7%, for C-
18 -Pvol = 4,8%, the middle size of the pores makes
up Pm~3,75 and 4.5 uM accordingly.

The maximum and minimum size of SiC grains
in C-19 composite is 9-3 uM, middle size = 6 pM; in
C -18 composite - 8-4 uM, middle size = 6 pM.
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The maximum and minimum size of aluminum
oxide grains is 1 / 1pM for C-19 composite and 1/0,8
pM for C-18 composite. The average size of
aluminum oxide grains in each composite is 1 and
0.8uM, respectively. As for boron nitride, its
dimensions are minimal and approximately equal to
an average of 200 nM.

The average grain size in total Km = 6.5 and 6.6
uM, respectively. Glassy phase volume fraction Gvol
=3 and 1% respectively;

Crystal shape factor
Fiic-o=Dmax/Dmin=10.56/5.54=1.91;
Fric-10=Dmax/Dmin=10.56/6.25=1.69.

Crystal distribution factor in the matrix by our
visual estimation, Fia = 0.9.

The unreacted residue of silicon is about 2 wt.%.
In other cases, the Si mass in the than initial
composition should be taken to be no more 18-19
percent. The carbon fiber dopant increased the

mechanical properties by



Data on phase components in C-19 and C-18 composites

Table 5

Number
Max. size of Min. size of
) Field of of Grains ) Fxf-shape
Composit Phase . grain (pore) grain (pore)
vision S, | counted (pores) factor
e name Dmax. pM Dmin. yM
pM2 grains Dmid. pM Dmax/Dmin
(average) (average)
(pores), n
SiC 12 11 9 3
A1203 250 1 1 1
C-19 SiALON 2070 55 14 32 18
BN 45 0.2 0.25 0.16
Average 90.5 6.5 10.56 5.54 191
Pores 10 3.75 4 35 1,15
SiC 15 10 8 4
Al1203 280 0.8 1 0.8
C-18 SiALON 2070 50 9 33 20
BN 45 0.22 0.27 0.18
Average 97.5 6,6 10.56 6.25 1.69
Pores 12 45 5 4 1.25

3 wt.% in C-18 (Table 2). The crystalline phase

is: in C-19, 100-(V porous +V glassy)=100-(3.7+3)
=93.3, while in C-18: 100-( V porous++V glassy) =
100-(4.8 + 1) =94.2.

The dependence of the micro- and macro-
mechanical characteristics of the materials on the
crystalline phase content in the composite was
calculated according to Z.Kovziridze’s [22] for-

mula:

5, = _PFkd
d ™ Km Kv Fkf

Where: P-load; Km- middle size of crystals; K v-
volume fraction of crystals in the matrix; F -
crystals distribution factor in the matrix, which is
determined by the researcher; in case of equal

distribution it equals to 1, in case of unequal
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distribution = 0.9; Fkf-crystal shape factor, is taken
as the ratio of the largest characteristic size of a
crystal to the smallest, which allows us to
characterize the shape of a given set of crystals,
according to which we are able to define
correlation of mechanical characteristic in the
matrix from the crystal phase characteristics in our
proposed formula. By inserting the data of Table 4

into the formula we get:

_ 21875x09 196875
%4 = 65%942x1.69 1035

The dependence of the macro-mechanical

characteristics of the materials on the porous phase



content in the composite was also determined

according to Kovziridze [23] formula.

O, = —P =
P l:p : Pd : onl : I:’m
2187.5 21875

“0ox125x45xa8 243 0 MPAMM
Where: P-is load, MPa; Fp- shape factor of the
pore; Pd- pores distribution factor in the matrix.
Determination of this value and the evaluation of
its significance depends on the researcher, based on
the morphological picture depending on how the
pores are distributed in the material and what size
they are. The value of the factor can vary from 1 to
0.8. If the pores are evenly distributed in the matrix
and are about the same size, the factor is
determined to be equal to 1; if the pores are
unevenly distributed, the factor equals to 0.9 and if
the coalescence process of pores is initiated, factor
is 0.8; Pvol.-volumetric fraction of the porous
phase in the matrix; Pm- the average size of the

pores.

3. CONCLUSION

The obtained composites have been studied and
determined the phase composition of the
composites; in the case of both composites the main
phase, i.e. the matrix is TiC-TiB2-B4C- SiAlON-
SiC-BN-AI203, in which the BN grains are
distributed, originated in the nitrogenation process
as a result of the decomposition of boron carbide by
nitrogen and the replacement of carbon with
nitrogen. The composites are well sintered and the
crystals are bonded together with a layer of
SiAION. Material of high

characteristics is obtained. The advantage of this

physical-technical
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method is that compounds, which are newly formed
thanks to interaction going on at thermal treatment:
SisNg4, Si, AIN are active, which contributes to f-
SIALON formation at relatively low temperature, at
1300-1350°C. Itisevident that inculcation of ALN
in crystal skeleton of 3-SisN4 is easier since at this
temperature interval crystal skeleton of SisNaisstill
in the process of formation. 3-SIAION was formed at

1450°C. Part of boron carbide was transformed into
boron nitride in nitrogen environment and in
titanium diboride, which in the case of both
composites is in small quantities. Composite with
low resistance (specific resistance approximately
about 1020Ohm.M), activation energy (E = 0.27 eV)
and the temperature coefficient of electrical
resistance (Aa T = 0.057 k') with main part of -
SiAION. Compression strength-2198 MPa, Be-
nding strength-271 MPa, HV=1368. Thermal

expansion coefficient a2-700-3.8 10¢°C.
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Resume: Objective. This study aims to develop
a method for determining the sizes of micro-
structural components, specifically grains and
pores, in composite materials.

Method. Electron microscopy was used to ana-
lyze microstructural images, and a linear measu-
rement technique was applied to determine the
dimensions of crystalline grains and pores based on
the obtained micrographs.

Results. The developed method enables the
determination of the maximum and minimum sizes
of particles or pores, their shape factor and average
dimensions.

Conclusion. Using the measured parameters of
particles and pores in conjunction with the for-
mulas developed by Prof. Kovziridze, a correlation
is established between the mechanical properties
and the crystalline and porous phases of the

composite material.

Key words: composite, correlation, porous phase,

mechanical strength, structure, grain/pore size.

1. INTRODUCTION
The properties of metal-ceramic and ceramic

composites are primarily determined by their
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microstructure [1-5]. To achieve optimal pro-
perties in any system, microstructural control is
essential. Therefore, the microstructure differs
according to the specific application of the
material.

For optimal mechanical performance, the most
favorable microstructure is typically characterized
by a uniform distribution of fine particles of the
solid phase within the metallic binder phase.

A thin metallic film separating the solid phase
grains is advantageous in two ways:

1. It lacks the plasticity typical of bulk metal,
thus increasing the composite’s strength;

2. A continuous metallic phase helps prevent
crack formation in the brittle high-hardness phase.

For example, in various WC-Co compositions
with different binder systems, the maximum
strength is achieved when the binder phase thi-
ckness averages around 0.5 pm. This can be exp-
lained by changes in the distribution and properties
of the binder phase. When the binder thickness is
below 0.3 pm, it is insufficient to fully encapsulate
carbide grains, leading to carbide-carbide contacts
that reduce composite strength [2, 4, 5].
show that

Experimental findings during

sintering, a continuous ceramic skeleton is not



formed. The strength of WC-Co composites de-
pends on the properties of the binder phase, while
the fracture behavior of metal-ceramic composites
is governed by the grain size of the solid phase [2,
4, 5]. Studies of the Ni-Mo-TiC system indicate that
as carbide grain size increases, fracture initiates
from the grains rather than the binder. Moreover,
average binder layer thickness varies with carbide
grain size [2, 4, 5].

It is also noteworthy that cermets, in which the
fracture path passed through the carbide grains,
exhibited lower strength. The microstructures
examined in this study primarily belong to systems
sintered through liquid-phase processes; however,
there are composite systems for which solid-state

sintering is essential

2. MAIN PART

Accurate quantification of all relevant mic-
rostructural parameters is essential for the analysis
and comparison of composites with varying com-

positions and for establishing correlations with

their mechanical properties. To this end, a me-
thodological approach was developed as follows: a
metallographic section is prepared from the com-
posite specimen under investigation [2,6]. The
microstructure is observed using an electron
microscope, and 2-3 regions with distinct mic-
rostructural features are selected. Images are
captured at magnifications sufficient to clearly
resolve the shapes and sizes of grains belonging to
different phases (Fig. 1a, b).

The actual area of the field of view is deter-
mined based on the image magnification. For
example, Fig. 1a and 1b display the microstructures
of different ceramic composites. In Fig. la, the
magnification is 2000x, while in Fig. 1b, a scale bar
is provided. To determine the actual magnification
for Fig. 1b, the length of the scale bar is measured.
If it equals 12 mm (i.e., 12,000 pm) and represents
50 pm in reality, the magnification is calculated as

12,000 pm + 50 pm = 240x.

{3 e i’.ﬁ.

w D-; 8mm S5S60

17 Dec 2024

Figure 1

a) Microstructure of a metal-ceramic composite (x2000 magnification)

b) Microstructure of a ceramic composite



To determine the real field of view area, the
image’s length and width are measured and con-
verted to actual dimensions based on the mag-
nification. For instance, if the image length is 100
mm (100,000 pm), the actual length is 100,000 ym
+ 240 = 416 pm. Similarly, if the width is 55 mm
(55,000 pm), the actual width is 55,000 pm + 270 =
200 pm. Therefore, the total observed area is:

S =416 pm x 200 pm = 83,200 um?2.

Prof. Z. Kovziridze investigated the correlation
between mechanical properties and both porous (a)
and crystalline (b) phases of composite materials,
proposing the following formulas [7-11]:

(a) Porous phase correlation:

Omp= P/FpPaPvolPm

Where:

e P =applied load (MPa),

e Fp=pore shape factor (ratio of maximum to
minimum pore diameter),

e Pa= pore distribution factor in the matrix
(ranges from 1 to 0.8 depending on
uniformity. If the pores are uniformly
distributed and of similar size, the factor is
taken as 1. A value of 0.9 is assigned when
the pore distribution is non-uniform, and
0.8 if pore coalescence has begun),

¢ Pvi=volume fraction of the porous phase,

e Pm=average pore size.

(b) Crystalline phase correlation:
0d=PFrd/KmKvFit

Where:
e P =applied load (MPa),
o  Fia = crystal distribution factor (1 for
uniform, 0.9 for non-uniform),

e K = average crystal size (um),

e Kv=volume fraction of the crystalline
phase,
e Fu= grain shape factor (ratio of max to

min grain diameter).

Based on Fig. 1a, it can be concluded that the
grains of the crystalline phase are uniformly
distributed; therefore, the crystal distribution
factor (Fxa) can be considered equal to 1. As for the
crystal shape factor (Fi), in the first case, the largest
grain is approximated as spherical, and its diameter
is measured. For example, if Dmax = 15 mm (15,000
pm) and the image magnification is 2000x, then
Dmax = 15,000 pm + 2000 = 7.5 ym. Likewise, if
Dmin = 1 mm (1,000 pm), then Dmin = 1,000 pm +
2000 = 0.5 pm. Thus, the shape factor is Fxir = Dmax
/Dmin=7.5/0.5=15.

The average crystal size (Km) is determined by
measuring the diameters of all grains within the
selected field of view, calculating the average
diameter, and dividing by the magnification. For
instance, if the average measured grain diameter is
12 mm (12,000 pm), then

Kn =12,000 pm-+2000=6 pm.

The volume fraction of the crystalline phase in
the matrix (Kv, in wt.%) is estimated using relative
density. If the relative density is 0.97, the volume
fraction of the crystalline phase is considered to be
the same.

Based on the microstructure shown in Fig. 1b,
the crystal distribution factor (Fx) may be taken
as 0.9, and the shape factor (Fir) as Dmax / Dmin =
9mm/1mm-=9.

The same method is applied in the case of pores.
The measured data are entered into tables and
substituted into the corresponding formulas. The

table format is as follows:



Morphology of the Porous Phase

Table 1

View Area | Maximum | Minimum | Pore shape Pore distri- Volume Average | Bending
S, ym? pore size pore size factor bution factor | fraction of the | pore size load
Drmax, pm Drmin, pm Fp=Dmax/Dmin | in the matrix, | porous phase Pm, pm P, MPA
P4 Pvol, %
1 2 3 4 5 6 7 8
Table 2
Morphology of the Crystalline Phase
View Area | Maximum | Minimum Crystal Crystal Volume Average | Bending
S, pm? crystal size | crystal size | shape factor | distribution | fraction of the | crystal load
Drmax, pm Drin, pm Fp=Dmax/Dmin | factor in the crystalline size P, MPA
matrix, phase Pm, pm
P4 P, %
1 2 3 4 5 6 7 8

To measure irregularly shaped grains or pores,

we can use the model shown in Figure 2, which

allows the irregular object to be approximated by

an equivalent sphere and measured accordingly. In

the diagram, line 3 represents its measured

dimension.

Figure 2. Method for determining the size

of irregularly shaped grains [12]
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3. CONCLUSION

A linear analysis method has been developed for
determining the size of structural particles in
composite materials, enabling the prediction of
mechanical properties based on the composite’s

microstructural characteristics.
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Resume: Goal. The aim of this work is to study
Georgian kaolinized clays, which are considered as
substandard kaolin raw material, and fly ash, waste
from thermal power plants, in order to obtain
metakaolin, a highly effective pozzolanic additive
for cement/concrete.

Method. The mineral composition of clays was
determined using an Optika B-383POL polariza-
tion microscope (Italy).

For thermogravimetric analysis, a NETZSCH
derivatograph with STA-2500 REGULUS thermo-
gravimetric and differential thermal analyzer
(TG/DTA) was used. Samples were heated to 1000
° G, in a ceramic crucible, heating rate 10 °C / min.
Reference substance a-Al203.

The X-ray phase analysis was carried out using
a Dron-4.0 diffractometer (“Burevestnik”, St. Pe-
tersburg, Russia) with a Cu-anode and a Ni-filter.
U=35kv. I=20mA. Intensity - 2 degrees/min. A =
154178 A.

The pozzolanic activity of heat-treated clays
was determined by absorbing lime from a lime
mortar according to GOST R 56592-2015 (Mineral
admixtures for concretes and mortars. General

specifications).
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Results. Parameters for the synthesis of highly
active metakaolin have been determined, such as
the ratio of raw components, processing tempe-
rature, pozzolanic activity, mechanical strength,
etc. Under laboratory conditions, cements with
high physical and mechanical properties were
obtained based on the developed pozzolanic
additive.

Conclusion. By heat treatment of kaolinized
clays of Georgia at 600 -700°C it is possible to
obtain an effective pozzolanic additive — me-
takaolin.

Joint heat treatment of kaolinized clays with FA
allows reducing the temperature of metakaolin
synthesis to 550-590°C, improving the pozzolanic
properties of metakaolin and increasing the
mechanical strength of cements.

Key words: pozzolanic additive, kaolinite clay,
metakaolin, fly ash

1. INTRODUCTION

Cement/concrete is the main building material
used globally in all modern construction projects.
At the same time, cement production consumes a
huge number of natural materials, the widespread
use of which has led to the depletion of natural
resources as well as CO: emissions into the

environment during clinker firing. These processes



have a great impact on global warming and the
ecological condition of our planet [1].

In 2020 alone, the global annual cement pro-
duction was around 5.9 billion tons, which corres-
ponds to 4.8 billion tons of CO2 emitted [2]. In
addition, sulfur oxide (SOs) and nitrogen oxides
(NOx) are some of the other harmful greenhouse
gases that are released during the cement pro-
duction process and can also have adverse effects
on the environment. In addition to the emission of
toxic greenhouse gases into the atmosphere, the
Portland cement production process is also res-
ponsible for the consumption of large amounts of
raw materials and energy [3].

To solve this problem, different approaches are
used, one of which is to reduce the amount of
clinker in cement/concrete using effective pozzo-
lanic additives.

Pozzolanic materials contain reactive silica or
alumina and when mixed with Portland cement,
react with Ca(OH)2, which is formed during
cement hydration, resulting in the additional
formation of calcium hydrosilicates and hydrogar-
nets, initially in a gel-like state, which subsequ-
ently crystallizes and gives additional strength to
the cement stone. Pozzolanic additives are intro-
duced into cement to improve such construction
and technical properties as water resistance and
sulfate resistance. A high-quality pozzolanic addi-
tive should have a partially amorphous or glassy
structure.

In recent years, metakaolin has become incre-
asingly popular worldwide as a high-performance
pozzolanic additive. It is an artificial environme-
ntally friendly material that is obtained by treating

kaolin clay at temperatures between 600 and
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800°C, which leads to dehydroxylation of the kao-
linite crystal structure to form metakaolin [4-8].

The main mineral of kaolin clays is kaolinite —
ADSi2Os(OH)s, i.e., 2Si02- Al203-2H20, the rest are
quartz, mica, and feldspar. Under normal natural
conditions, it is quite stable, but in the temperature
range of 600-850°C it loses 14% of its mass, which
was present in the form of hydroxyl ions. As a
result of heat treatment, the structure of kaolin is
destroyed and amorphous, i.e. reactive metakaolin
- 28i02-Al2Os1is formed.

In the process of cement hydration, new phases
are formed by the interaction of clinker minerals
and metakaolin: calcium hydrosilicates (C-S-H),
calcium hydroaluminates (C2AHs, C4sAHi3, C3AHe),
calcium hydrogranates (C3ASH4) and the highly
active mineral stratlingite C2ASHs, which give
cement additional strength [9-14].

The high reactivity of metakaolin causes a high
degree of cement hydration, low porosity of ce-
ment stone, high mechanical strength at all ages of
curing, and hence durability. In addition, the
introduction of metakaolin increases the density of
cement/concrete, which reduces their water
permeability, which in turn increases frost and
sulfate resistance. Thus, the introduction of meta-
kaolin into the cement-concrete mixture leads
both to a decrease in the clinker fraction and to an
increase in the mechanical strength of the final
product and other construction-technical indica-
tors.

The use of metakaolin for the production of
geopolymer materials of alkaline activation is
widely known. Geopolymer materials obtained
based on metakaolin are characterized by high

physical and mechanical parameters [15-20].



Kaolin clays usually contain 35-45% AL:Os. The
reserves of such clays in the world are very limited.
Large deposits are in Ukraine (Prosyanovskoye,
Glukhovetskoye, Chasov Yar), in Russia (Ural, Far
East), etc.

Georgia has no kaolin clays. There are only
substandard kaolinized clays, in which the content
of Al:Os varies within 20-30%.

For over 30 years, Georgia has been experien-
cing a deficit of effective pozzolanic additives due
to the lack of local high-quality natural raw ma-
terials. Therefore, it is of great practical interest to
identify resources of such raw materials in the co-
untry and develop methods to increase their
activity.

The clay rocks of Georgia (shales, argillites,

fusible clays) were studied to obtain artificial

pozzolanic additives based on metakaolin. A mode
of thermal activation of clay rocks was developed
and cements and concretes were obtained using
them [21-23]. However, kaolinized clays were not
studied in this direction.

The aim of this work is to study Georgian
kaolinized clays, which are considered as substan-
dard kaolin raw material, and fly ash, waste from
thermal power plants, in order to obtain meta-
kaolin, a highly effective pozzolanic additive for

cement/concrete.

2. MAIN PART
Kaolinized clays from different deposits of

Georgia were used for the research (Table 1).

Table 1
Chemical composition of kaolinized
clays of Georgia, wt.%
*No. LOI SiO2 | AlOs | Fex0s | FeO CaO | MgO SOs Na2O | K20
1 9.40 | 4551 | 21.50 | 4.74 1.13 7.92 3.72 1.53 2.30 1.50
2 9.68 | 50.79 | 22.03 | 7.42 0.62 2.80 2.03 0.21 1.59 1.44
3 559 | 57.18 | 21.27 | 1.44 1.69 2.43 2.86 0.32 3.41 2.08
4 414 | 57.70 | 27.80 | 1.14 1.15 0.99 1.97 0.54 2.01 2.05
5 1.8 60.62 | 2951 | 2.15 - 0.51 0.58 1.03 1.58 1.04

*No.1- Qobuleti, No.2 — Makhinjauri, No.3 — Brili, No.4 — Makvaneti, No.5 — Kandara.

1. Results and discussion
According to microscopic descriptions, the
mineralogy of clays is almost identical: the main

mass is represented by weakly carbonized clay
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mass, pelitic substance. Silty clastic material is
represented by feldspars and quartz fragments.
Microphotographs of clays are shown in

Fig. 1-5.



Fig. 1. Qobuleti. Fragments of quartz-feldspar material interspersed

in kaolinite-a hydrosluidic clay fraction. 135x

Fig. 2. Makhinjauri. Fragments of quartz-feldspar material interspersed

in kaolinite-a hydrosluidic clay fraction. 135x

Fig. 3. Brili. Fragments of quartz-feldspar material interspersed

in kaolinite-a hydrosluidic clay fraction. 135x
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Fig. 4. Makvaneti. Fragments of quartz-feldspar material interspersed

in kaolinite-a hydrosluidic clay fraction. 135x

Fig. 5. Kandara. Fragments of quartz-feldspar material interspersed

in kaolinite-a hydrosluidic clay fraction. 135x

XRD patterns and DTA curves are shown on Fig. 6 and Fig. 7.
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Fig. 6. XRD patterns of clays: a) Qobuleti,
b) Makhinjauri, c) Brili, d) Makvaneti

and e) Kandara

In order to obtain metakaolin, clays were trea-
ted at temperatures of 550, 600, 700, 800°C with a
holding time of 1 hour at the maximum tempe-

rature.

970°C

590°C

97°C

100 200 300 400 500 600 700 B00 500 1000 °C

Fig. 7. DTA curves of clays: a) Qobuleti,
b) Makhinjauri, c) Brili, d) Makvaneti

and e) Kandara

Kinetics of lime absorption by kaolinized clays

from a saturated solution are shown in Fig. 8.
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Fig. 8. Kinetics of lime absorption by heat-treated kaolinized clays from saturated solution
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According to the requirements of the standard,
the additive has high pozzolanic properties, if the
amount of absorbed CaO from a saturated solution
is more than 70 mg/g, medium - from 30 to 70 mg/g
and low - up to 30 mg/g.

The test results showed that all the studied clays
have different pozzolanic activity depending on
the heat treatment temperature. Heat treatment

from 550°C to 800°C increases their ability to
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o O O

Compiressive strength, MPa
o

550°C

m Without additives
Brili - 20%

absorb CaO. All clays after heat treatment at 700°C
and above are classified as highly active pozzolanic
additives. Although at 800°C the absorption of CaO
does not increase much compared to 700°C.

The cements were prepared with the addition of
20% heat-treated kaolinized clays with different
heat treatment temperatures. For comparison, a
control composition was prepared without the

additive (Fig. 9).

600 °C

Qobuleti-20% = Makhinjauri - 20%
Makvaneti - 20% m Kandara - 20%

700 °C 800°C

Fig. 9. Compressive strength of cement samples

after 28 days hardening with different temperatures

of heat treatment of kaolinized clays

According to the test results (Fig.9), kaolinized
clays heat-treated at 600-800°C showed high
mechanical strength, exceeding the indicators of
cement without additives. However, heat treat-
ment of clays at 800°C led to an insignificant
increase in strength, and the optimum temperature

can be considered to be 600-700°C.
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In order to optimize the metakaolin synthesis
process, it was proposed to add fly ash to kaolinized
clays and subject them to joint thermal treatment.

Fly ash from the Kutaisi Thermal Power Plant
was used, the composition of which is as follows
(wt. %): LOI - 6.13, SiO2 - 52.14, AlOs — 31.59,
Fe203-5.17, CaO - 0.69, MgO - 0.74, SOs — 0.53,
Na20 - 0.99, K20 - 0.29, P-Os—- 0.05, TiO2-1.32.



During the heat treatment of fly ash together
with kaolinized clay, the coal particles contained in
the fly ash are burned, which creates additional
heat and the formation temperature of metakaolin
decreases. In addition, fly ash has a high AlOs
content, which serves as an additional source for

the synthesis of metakaolin.

100

This technology for obtaining an effective
pozzolanic additive based on metakaolin, synthe-
sized from kaolinized clay and fly ash, was patented
(“Raw material mixture for producing pozzolanic
additive to cement”, U 2024 2197 Y).

Using Makvaneti clay as an example, it was
shown that the addition of 10-20% fly ash made it
possible to reduce the metakaolin synthesis

temperature to 550 - 590°C (Fig. 10).
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Heat treatment temperature, °C
B 90% clay+10% FA M 85% clay+15% FA 8 80% clay+20% FA

Fig. 10. Kinetics of lime absorption by heat-treated Makvaneti

clay together with FC from a saturated solution

To determine the mechanical strength of cements, compositions were prepared using kaolinized clays:

Makhinjauri, Brili, and Makvaneti. Thermal treatment of clays was carried out together with FA at a

temperature of 570°C.
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Fig. 11. Compressive strength after 28 days of hardening

of cement samples with the addition of kaolinized clays and FA,

jointly processed at 570°C

As the test results showed, all cements have
higher mechanical strength compared to cement

without additives (Fig. 11).

3. CONCLUSION

Based on the conducted studies, it can be con-
cluded that by heat treatment of kaolinized clays of
Georgia at 600 -700°C it is possible to obtain an
effective pozzolanic additive — metakaolin.

Joint heat treatment of kaolinized clays with FA
allows reducing the temperature of metakaolin
synthesis to 550 - 590°C, improving the pozzolanic
properties of metakaolin and increasing the
mechanical strength of cements (Patent of Georgia
U 2024 2197 Y).

FA during thermal treatment creates additional

heat (due to the combustion of coal particles) and
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the temperature of metakaolin synthesis decreases.
At the same time, FA with a high content of A2Os3

creates an additional amount of metakaolin.
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Resume: Goal. The present paper aims to

the of

Bi2Sr2C0180y ceramics by adding graphene (Gr).
Method. Reference (pristine) and Gr-added

Bi2Sr2C0180y ceramic materials were prepared by a

enhance thermoelectric  properties

solid-state reaction method. The phase purity of
materials was checked by powder X-ray diffraction
analysis. The microstructure was observed by
scanning electron microscope. Electrical and
thermal transport measurements were carried out.

Results. Based on the experimental results
obtained, the power factor (PF) and the figure of
merit (ZT) were calculated to evaluate the
thermoelectric performance of the prepared
composites.

Conclusions. The incorporation of 0.85 wt% Gr
into the BixSr2Co180y host matrix leads to an
increased density and enhanced electrical conduc-
tivity of the material. The Seebeck coefficient of
the Gr-added sample shows a similar temperature
dependence to that of the reference sample. The
thermal conductivity rises with the introduction of
Gr. The PF and ZT values of the Gr-added

composite are threefold (at 973 K) and twofold (at
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573 K) higher, respectively, compared to the

reference Bi2Sr2Co1.80y.

Key words: Bi:Sr2Co180y ceramics, graphene
additive, microstructure, power factor, figure of

merit.

1. INTRODUCTION

Thermoelectric materials have gained signifi-
cant interest due to their ability to directly convert
waste heat into electricity, providing a sustainable
and eco-friendly energy solution to address the
energy crisis and environmental challenges. The
development of highly efficient thermoelectric
materials is expected to promote the widespread
application of thermoelectric generators for
generating electrical power from waste heat
discharged by various industrial systems and
[1].

intermetallic thermoelectric materials

renewable energy sources Conventional
contain
toxic and rare elements such as Te, Se, Sb, and Pb
[2, 3]. Furthermore, intermetallic compounds show
poor structural and chemical stability at high

temperatures, leading to the evaporation and

oxidation of their constituent elements [4-6].



Layered thermoelectric cobaltites, such as
NaxCoQO2, Bi2Sr2Co0180y, and Ca3Co4Oy [7-10] are
free from these drawbacks. However, their prac-
tical application remains challenging due to
relatively low efficiency in converting heat to
electricity when compared to conventional mate-
rials [11]. The thermoelectric performance is
quantified by a dimensionless figure of merit (ZT)
represented by the equation [12]: ZT=0S$?T/k,
where o, S, T, and k are electrical conductivity,
Seebeck coefficient, absolute temperature, and
total thermal conductivity, respectively. Therefore,
the thermoelectric conversion efficiency rises with
increasing ZT, implying that a high o, large S, and
low k characterize a high-performance thermo-
electric material. Additionally, the electrical
component of the ZT equation, known as the
power factor (PF=S?0), is also used to evaluate the
output electrical power [13-14]. The potential of
cobaltites for use in thermoelectric generators can
be significantly enhanced through doping and/or
the introduction of appropriate additives [15-17].

Over the past decade, graphene/ceramic com-
posites have generated significant scientific and
technological interest worldwide. Graphene, with
its ultrahigh electrical conductivity exceeding 10°
S/m and its large contact area for building con-
ductive paths, can dramatically enhance the elec-
trical performance of composites and expand the
applications of ceramic materials, including energy
conversion devices [18-19]. Since 2015, several
studies have been conducted to examine the impact
of graphene or reduced graphene oxide (RGrO)
additives on the thermoelectric properties of p-
type CuAlO2, n-type SrTiOs and ZnO-based
materials, WQOs, TiOz2 or BaTiOs [20-26]. These
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studies have shown that the optimal amount of
Gr/RGrO additive could lead to markedly increased
electrical conductivity while effectively lowering
the lattice thermal conductivity through phonon
scattering. As a result, the thermoelectric conver-
sion efficiency of the prepared materials will be
improved. The effect of reduced graphene oxide on
the power factor of NaxCo0204 layered cobaltite was
reported in [27]. It was found that incorporating
RGrO into the Na.xCo20s+ matrix significantly
enhanced the power factor by increasing both
electrical conductivity and the Seebeck coefficient.

In our previous paper, we investigated the
impact of adding 0.15, 0.35, 0.70, and 1.15 wt%
graphene on the power factor of Bi2Sr2Co1.80y [28].
The results demonstrated that incorporating
graphene into this system led to a monotonic
decrease in electrical resistivity for the 0.15 to 0.70
wt% % graphene additions, while the Seebeck
coefficient of all synthesized samples remained
largely unchanged. The addition of 0.70 wt%
graphene resulted in about 40% enhancement of
the PF value. However, a notable decrease in
density was observed in the sample containing 1.15
wt% graphene. This decrease occurred due to the
formation of a loose matrix with relatively high
porosity and poor texture. As a result, this
deterioration adversely affected electrical conduc-
tivity and, consequently, the power factor.

The present study aims to investigate the impact

of adding 0.85 wt% Gr on the power factor and

figure of merit of Bi2Sr2Co1.80y ceramics.

2. MAIN PART
Reference and 0.85 wt% Gr-added BixSr2Co180,

ceramic samples were prepared using solid-state



reaction method from reagent-grade powders of
bismuth oxide (Bi20s3), strontium carbonate (SrCQOs),
cobalt (II, III) oxide (Co304) and graphene
nanopowder (www.graphenesupermarket. com,
purity: 99.2%, average flake thickness: 12 nm (30—
50 monolayers), average particle (lateral) size: ~ 4.5
pm). The mixtures of these raw powders were
homogenized in a planetary mill (Fritsch Pu-
lverisette 7 Premium line) for 1 h at a rotating
speed of 120 rpm. After homogenization, the
powders were calcined at 1043-1088 K for 18 hours
with intermediate grindings in an agate mortar,
then pressed into pellets at a hydrostatic pressure of
220 MPa. Finally, the pellets were sintered at 1103—
1108 K in air for 20 h, then cooled to room
temperature in the furnace. The phase purity of the
prepared materials was examined using X-ray

diffraction (XRD, Dron—-3M diffractometer, CuKa—

radiation) method. The resistivity of the samples as
a function of temperature p(T) in the temperature
range from 293 to 973 K was measured by the
standard four-probe method. The temperature
dependence of the Seebeck coefficient was deter-
mined by a differential method with a Lab-made
setup using a KEITHLEY DMM6500 multimeter.
Electrical transport measurements were performed
on bar-shaped samples with dimensions of 13x7x2.5
mm?3. Thermal conductivity was measured in the
temperature range between 293 and 573 K using
the “Hot Disk TPS 500 thermal constants analyzer”,
coupled with a temperature platform for TPS.
Finally, the values of PF and ZT were calculated to
evaluate the thermoelectric performance of the
synthesized materials.

XRD patterns of the reference and 0.85 wt% Gr-

added Bi2Sr2Co180y samples are presented in Fig. 1.
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Fig. 1. X-ray diffraction patterns
of reference (1) and 0.85 wt% Gr-added (2) BizSr2Co1380ysamples

The main peaks align closely with those repo-

rted in previous studies [29]. No diffraction peaks
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of graphene were observed due to its very low

content. The XRD patterns indicate that graphene



particles were dispersed along the grain boundaries
within the Bi2Sr2C0180, matrix, resulting in the
formation of a Gr/ceramic composite.

Fig. 2 shows the surface SEM micrographs of the
samples. SEM images show that the addition of Gr
improves the
Bi2Sr2Co0180,

lowering electrical

sinterability and density of
ceramics, which is favorable for
resistivity. The apparent
density of the reference sample is 4.1 g/cm3, which
is 60% of the theoretical value of 6.8 g/cm3 [30].
With the incorporation of Gr, the density of the
Bi2Sr2C0180,/Gr composite increases to 4.4 g/cm3,
representing 65% of the theoretical value.

Fig. 3 illustrates the electrical resistivity of the
prepared samples. The addition of 0.85 wt% Gr
results in approximately a 3-fold decrease in
electrical resistivity in the temperature range of
293 K to 973 K. The lower electrical resistivity of
the Bi2Sr2C0180,/Gr

attributed to the highly conductive graphene,

nanocomposite can be

-
DET: SE Detector
Device: TE5130MM

SEM MAG: 3.00 kx
HY: 2000 kY

20 pm

which facilitates the formation of a percolation
network for easier charge carrier transport across
the BizSr2Co1.80y matrix.

The temperature dependence of the Seebeck
coefficient is displayed in Fig. 4. A positive S value
is observed in the samples, indicating p-type
conduction. The Seebeck coefficient of prepared
materials increases as the temperature rises, and its
value is not markedly influenced by the graphene
additive.

The temperature dependence of the power
factor is shown in Fig. 5. Because of the reduced
resistivity, the Gr-added sample has a PF value that
is more than three times higher at 973 K than that
of the reference sample.

Incorporation of graphene leads to a significant
increase in thermal conductivity (Fig. 6).

Fig. 7 presents the calculated figure of merit

within the temperature range of 293 K to 573 K.

*5-9 M4
473
DET: SE Detector
Device: TS5130MM

SEM MAG: 3.00 kx

HY. 2000 ky 20pm

Fig. 2. Surface SEM images of reference (1)
and 0.85 wt. % Gr-added (2) Bi2Sr2Co180, samples
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Fig. 3. Temperature dependence of electrical resistivity
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Fig. 4. Temperature dependence of Seebeck coefficient
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Fig. 7. Temperature dependence of the figure of merit

Incorporation of 0.85 wt% graphene results in a
2-fold rise in the ZT value at 573 K. This is because
the reduction in electrical resistivity of the
Bi2Sr2Co180,/Gr composite dominates the increase

in thermal conductivity.

3. CONCLUSION

In summary, reference and 0.85 wt% graphene-
added Bi2Sr2Co180y materials have been prepared
using a solid-state reaction method. The structure
and microstructure of the prepared samples were
examined using XRD and SEM techniques.
Electrical resistivity, Seebeck coefficient, and
thermal conductivity have been measured. Based
on the obtained data, the power factor and figure
of merit have been calculated. The obtained results
show that the incorporation of the Gr additive into
the Bi2Sr2Co180y; host matrix leads to denser
material with improved electrical conductivity. As

a result, the graphene-added composite exhibits
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higher PF and ZT values compared to the reference

Bi2Sr2Co1.80y material.
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G9%0odg: I0Bsbo. FoImoygbowo bsdmmdo doBbs olLobsgl Bi2Sr2Co180y 3gMedogol
0903MggdGHOME0 130L90900L 39mAXMdGLYOIL gM33960L (Gr) sbsTsE0m.

9900m@oO. 3YomRsBMGO  Mgodio0ol  IgmmEom  LobmgBoMgdM  odbs  LoyMgbo
(1900965853 ™M) s M9x8gbol BsTE0sb0 Bi2Sr2Co1.80y 396530300 35Loengdo. oloesms
735DMH0  LOLYRMZ) IA0BS Mg6EYIBMPOBGMSJ30Io bseoDom. FozOMUEEM™M]-
AGMO0L ©s3DYMS gobbmM30gm@s BsL39boMgdgwo gwgdBHOHmbmeo dozmmbizm3oom. Bo-
GO 9gdBHOHMWO O MYHTIMEO BHOBL3MOEHMWO 45BMIZ900.

390939%0. ULobmgboMmgdmwo  3m3mBoGgdol  MgMHIMgwgdBHawo  9B9dEHO@IOL
99L5935190 5, B0 OO 9Ju3gMH0TIbEMEo T9YJOoL Loxd39EBY FodMmM3EO 04bs
Lodds3M0OL BogBm®o (PF) o 35M30bmdol dsB39b9dgeo (ZT).

©L336900. Bi2Sr2Co180y Loyhgb dsbsewsdo 0.85 fmbomo % gMsx3gbol sbsds@ol
993obs 4965306MHMdYdL FoLoerol bLod33M030L BOILS O JWGJBHOMAIBHIOMBOL  owa-
XM39L9dsL. Gr-ol sbsdo@0sbo BodMdol Bggdg30L 3M9n03E0IbGHO 93wWgbl Loymgbo
60330l bgogl 3H9d39Mmed e ©sdM30EIOIEgdsL. 3MORIBOL BsTsGO T5Egdl
00MQ5TBHIOMIL.  gM9x3960L 89933900 3MA3MBoGHOL  LoAIESZMOL  BodBHMEOOLs
356M0LMd0L Joh3z9b9dcols 360369 MdYd0, glsdsdobo, 3—xgM (973 K=bg) s 2-x 96 (573
K-%9) 06905 boghrgb Bi2Sr2C0180y—056 dg0s6gdom.

U53356dm LoByggdo: Bi2Sr2Co1s0y 39600039, 40539606 bsds@o, d03mMmbEH®MIEMOS,
10dd 53Ol BoJBHMMO, 35MPOLMOOL Job3z9b9dgo.
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Resume: Objective: Study of mineral silicate
raw materials of Georgia with the aim of deter-
mining the possibility of obtaining from it Li-
ghtweight Expanded Clay Aggregate (LECA) by
heat treatment.

Method: Evaluation of transformations of six
types of mineral raw materials during high-
temperature heat treatment (900 — 1250°C) and
identification of rocks prone to intumescent/
transition to a porous substance. Study of the
required standard properties of the obtained
porous materials and their classification.

Result: The ability of clay slate and obsidian to
expand over a wide temperature range was
determined, and their properties were studied and
classified.

Conclusion: two types of raw materials mate-
rials— clay slate and obsidian (in the form of mono
charge) out of the six units selected for study —
exhibit a high degree of foaming after heat
treatment at 1100-1250°C and, according to the
studied characteristics/properties required by the
LECA expanded

standards, are classified as

clay and foam glass materials.
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Key words: Mineral raw materials, heat trea-
tment, porous material, characteristic properties,

classification according to standards.

1. INTRODUCTION

It is known that various types, but especially
artificial, (LECA - lightweit expanded clay aggre-
gete) are widely used in technology and many
industries. The traditional technology of their
production is based on the thermal treatment of
clay rocks of various nature or man-made raw
materials and their expansion. The porous mate-
rials obtained by this method are characterized by
a closed-pore structure, lightness, environmental
friendliness, heat and sound insulation properties,
as well as other, often unique, physical and
chemical characteristics [1] [2] [3].

The most commonly used products made from
lightweight porous inorganic materials are of two
types: the so-called “expanded clay” and foam
glass. Their identity is determined by the method
of production — high-temperature, but different
foaming process regime, high porosity of stru-
ctures and low bulk/specific density, while the
main areas of their application differ significantly.
In particular, expanded clay is known as a granu-

lar filler for lightweight concrete or an invariable



component of thermal insulation, water- and
frost-resistant coatings, when expanded clay is
used to make thermal insulation products of
various shapes and purposes [4] [5] [6].

It is worth noting that the types of operating
parameters and a number of physical and che-
mical characteristics regulated by the relevant sta-
ndards for both highly efficient energy-saving po-
rous inorganic materials are different depending
on the various areas of their application [7] [8].

It should be noted that both known types of
LECA (expanded clay and foam glass) are obtained
using different raw materials. To obtain expanded
clay (oval-shaped granules), natural rocks are used
— easily soluble clays, shales and other types of
clay minerals, the type and composition of which
are regulated by standards [9] and are generally
characterized in a number of works [10] 11]. The
technological process of obtaining expanded clay
from clay rocks requires processing raw materials
at a temperature of 1100-1250°C, and for by intu-
mescent firing it is recommended to use frit of
approximately the same size as crushed stone, or
artificially obtained granules (5-10; 10-15; 15-20
mm). When the raw material is difficult to
intumescent (due to its composition), they resort
to creating mixtures of “main raw material —
fermentive”. Man-made (mainly organic) materi-
als are often used as fermentive agent — waste oils,
coal dust, etc., which increases the environmental
risk — the level of environmental pollution with
carbon dioxide [12][13].

Modern technology for the production of foam
glass and foam glass products is based on the use
of two types of raw materials in the technological

process: secondary (collected) glass products
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(bottles, jars, window and other types of glass) and
granules/frits made from specially welded glass.
The inclusion of both types of raw materials in the
glass manufacturing process requires multi-stage
preparation: in the case of using smashed glass —
collection, sorting by assortment, washing, cru-
shing, fine grinding in a special mill, and in the
case of using fritted granules — preparation of a
multi-component mixture, its heating at a tem-
perature of 1450-1500°C. Granulation (fritting) on
water, combined pure grinding of frit and filler.
Finally, heating pure fractional mixtures obtained
by both methods at 850-1000°C, a foam glass
product is obtained [14] [15].

The technology of foam glass production from
the above-mentioned raw material base is charac-
terized by high energy and material intensity.
Ensuring the competitiveness of glass as a unique
energy-saving material necessitates the search for
a new non-traditional raw material base. In this
direction, research is being conducted in many
countries around the world to identify and study
natural rocks and man-made waste suitable for
foam glass production [16] [17].

Therefore, our research was aimed at expan-
ding the acceptable raw material base of two
porous materials presented in the expanded clay
nomenclature - expanded clay and foam glass, by
reducing material consumption and simplifying

the technological process of their production.

2. MAIN PART

In order to expand the acceptable resource base
of two types of multifunctional (expanded clay:
foam glass) LECA - lightweit expanded clay

aggreqete and to comprehensively address envi-



ronmental and technological issues within the
framework of research related to their imple-
mentation, an alternative resource base was selec-
ted: mineral-bearing rocks available on the terri-
tory of Georgia. In particular, silicate rocks were
selected for the study: zeolite, obsidian, clay slate,
argillite, volcanic ash and trachyte (the main raw
material). As a result of studying and analyzing
their chemical composition, it was established that
these materials are promising for use in the

technological process of obtaining LECA [18].

Raw material name ]-.

1000°C” |

Trachite

Clay Slate

Zeolite

Obsidian

Volcanic ash

1100°C

At the current stage of the work, an expe-
rimental study was conducted, the purpose of
which was to study the behavior of six main types
of selected raw materials during their high-
heat treatment

interval was defined as 1000-1250°C, and the

temperature processing. The

holding time at the selected temperatures was 20—
25 min, the results of heat treatment of the
studied raw materials are presented in the form of

photographs in Figure 1.

1200°C | 1250°Cc | Breed

Fig. 1. Photographs demonstrating the results of heat treatment

of the studied raw materials

Based on the results obtained for all six
materials, the following general conclusion can be
drawn:

— Trachyte and volcanic ash are less prone to
swelling. However, an increase in temperature

causes: a change in the color of trachyte
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fragments, and at 1250°C their slight porosity
is observed, while volcanic ash is calcined
only at 1200 and 1250°C;
— Argolite remains practically unchanged up to
1200°C, and at 1250°C it melts completely,

forming a black glassy mass;



()

@

®3)

The transformation of zeolite is manifested in
a gradual change of color: 1000°C — pink;
1200°C — milky. Melting of its grains, with the
(a
combination of black and milky parts), occurs

at 1250°C;

formation of a heterogeneous melt

In the case of clay slate, swelling of raw
material fragments was clearly observed in the
temperature range of 1100 — 1200°C; at
1250°C, melting and “shrinkage” of the
swelling material already occurs;

Thermal treatment of obsidian fragments at a

temperature of 1100°C already causes their

swelling. A further increase in temperature

(1100-1250°C) proportionally increases the

degree of their swelling.

The swelling coefficient (K,) was determined
for materials processed at temperatures corres-
ponding to maximum swelling, which was calcu-
lated using the formula K, = y/y’ (kg/m3),
where y and y' respectively, are the bulk densities
of the initial raw materials (shale and obsidian)
with a fraction of 10-15 mm and materials obtai-
ned by swelling (temperatures corresponding to
the maximum). It has been experimentally esta-
blished that K,the value for obsidian is 4.1, and
for slate - 3.9. That is, obsidian is characterized by

a greater tendency to swelling than slate.

Table 1
Characteristics/properties of LECA type materials obtained from obsidian
and slate and the characteristics required by the relevant standards
Meaning of properties
Foam glass Expanded clay
Main characteristics Design. And
. . GOST Foam glass Expanded clay
N required by GOST unit GOST 32496-
33949 -2016 from from foam
2013 req.
req. obsidian- glass

1 Specific gravity(? D kg/m?3 8<d <200 190 X® -
2 Bulk density @ Y kg/m3 X® - 100 <y'< 1200 650
3 Compression strength P(MPa) 0,3<P<2,00 0,81 0,5<P<10M 4.8
4 Water absorption W (%) X® - W <20 16

Sorption capacity S (%) $<0,7 0,42 X® -
6 Water resistance (sof- & X6 - E<1,8 0,76

tening coefficient) ()
7 Thermal conductivity A2s50C A <0,065 0,055 A<1,8 1,45

coefficient @ (W/m- K)

For granular materials with the particle size distribution required by the standard

For geometric figured patterns

This type of material is not required by the standard.
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Based on the experimental results, it was
confirmed that of the six types of raw materials
studied, two types clearly showed a tendency to
swell (transform into a porous material): the
temperature range for clay swells is 1100-1200°C
(maximum 1200°C), and for obsidian - 1100-
1250°C (maximum 1250°C). The difference bet-
ween them, which is noticeable visually, is in
color and texture. Expanded slate is a brownish-
brown layered material, while expanded obsidian
is a milky-gray, completely glassy, homogeneous
material. The first of them is similar to expanded
clay, the second to foam glass. This assumption
was confirmed by establishing the required
characteristics in the relevant standards (GOST
32496-2013 for expanded clay and GOST 33949-
2016 for foam glass) [7] [8].

For porous materials obtained from obsidian
and slate, the values of a number of characteristic
properties required by the relevant standards were
determined. The results of the study are presented
in Table 1.

The seven quality characteristics specified in
the table for colored grains and defined by the
standards for porous materials, four must co-
rrespond to foam glass and five to obsidian. Since
the product obtained from obsidian and slate has
characteristics that are within the limits set by the
relevant standards. It became possible to combine
porous materials obtained from shale with expan-
ded clay, and porous materials obtained from

obsidian with materials such as foam glass.

3. CONCLUSION
For six silicate raw materials of different

types and compositions, their transformation into
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porous materials during heat treatment at a
temperature of 900-1250°C was determined. In
this temperature range, two types of raw materials
- slate and obsidian - clearly demonstrate the
ability to transform into highly porous materials:
slate at 1200°C, and obsidian at 1250°C, with an
increase in volume of approximately four times. A
comprehensive comparative analysis of the pro-
perties of two main types of artificially obtained
porous materials (expanded clay and foam glass),
required by the standard and obtained from the
raw materials taken for research, showed that by
high-temperature firing of clay shale and obsidian,
it is possible to obtain two different types and
grades of porous expanded clay materials — expan-
ded clay grade M700 from clay slate and expanded
clay grade D200 from foam glass.

The research is carried out with the financial
support of the Shota Rustaveli National Science
Foundation, grant FR-23-15888 “Study of the role
of additives-modifiers in the synthesis of LECA

from silicate raw materials”.
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